一体化光伏围护结构对室外微气候和建筑能耗的影响研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

浙江省“尖兵领雁”研发攻关计划“夏热冬冷地区低碳建筑关键技术与装备研究及其示范”(编号:2023C03152);中央高校基本业务费(编号:226-2024-00212)


Study on the Coupling Effects Between Outdoor Microclimate and Building Energy Consumption for BIPV Buildings
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在“双碳”目标下,光伏建筑一体化(BIPV)技术成为建筑低碳化转型的关键。然而,其性能表现高度依赖气候条件,不同气候区BIPV对建筑围护结构热工性能和室外微气候的影响及其产能的分析仍缺乏综合量化结果。基于BIPV物理模型,建立了考虑光伏影响的计算流体力学(CFD)和建筑能耗模拟(BES)耦合模型。以严寒(哈尔滨)、夏热冬冷(杭州)和夏热冬暖(广州)三个地区典型城市为研究对象,在保持建筑表面反射率(0.3)与光伏等效反照率(0.3)一致的条件下,量化评估BIPV的影响。结果表明:(1)BIPV表面温度低于表面反照率为0.3的无BIPV的建筑表面温度,从而降低建筑室外的平均辐射温度(MRT)。冬季哈尔滨、杭州和广州峰值MRT分别降低0.62℃、0.74℃和0.74℃,对应平均通用热气候指标(UTCI)最大降幅达0.21℃、0.47℃和0.46℃,但对平均气温(AT)的调节较弱(降幅≤0.08℃)。(2)BIPV铺设后,日间时段UTCI降幅随太阳辐射增强而提升,至辐射峰值时段14:00,广州夏季UTCI最大波动达-0.70℃。(3)不同气候区通过太阳辐照度和气候条件分别影响光伏发电量和建筑冷热负荷。夏季哈尔滨太阳辐照度高、制冷负荷低,发电量为104.1 Wh/m2,建筑能耗为257.2 Wh/m2,能源自给率达40.5%,高于杭州(30.5%)和广州(19.7%)。研究结果为在不同气候区应用BIPV技术提供理论支撑。

    Abstract:

    Under the objectives of the “dual carbon” initiative, building-integrated photovoltaic (BIPV) technology has emerged as a pivotal strategy for facilitating the low-carbon transformation of building infrastructure. Nevertheless, the efficacy of BIPV systems is significantly influenced by climate conditions. A comprehensive quantitative analysis quantifying the impact of BIPV on the thermal performance of building envelopes, outdoor microclimates, and energy production across diverse climate zones remains insufficient. This research develops a coupling model grounded in the physical framework of BIPV, incorporating Computational Fluid Dynamics (CFD) and Building Energy Simulation (BES) methodologies to evaluate the effects of PV. Harbin (a severe cold region), Hangzhou (a hot-summer and cold-winter region), and Guangzhou (a hot-summer and warm-winter region) are selected as representative cities. The simulation presumes a consistent surface reflectance and an equivalent albedo of 0.3 for BIPV surfaces. The findings indicate that: (1) BIPV-enabled envelopes exhibit lower temperatures compared to non-BIPV counterparts with identical albedo, resulting in a reduction of outdoor mean radiant temperatures (MRT). In winter, after BIPV installation, peak MRTs in Harbin, Hangzhou, and Guangzhou decrease by 0.62°C, 0.74°C, and 0.74°C, respectively. Correspondingly, the maximum reduction in the Universal Thermal Climate Index (UTCI) reaches 0.21°C, 0.47°C, and 0.46°C. The influence on the average air temperature (AT) is marginal, with decreases not exceeding 0 08°C. (2) After BIPV installation, the daytime UTCI reduction correlates with enhanced solar irradiation, reaching a maximum of -0. 70 ° C during peak isolation around 14 00 in Guangzhou. (3) In different climate zones, solar irradiance and local climate conditions jointly influence PV power generation and building cooling/heating loads. In summer, Harbin experiences high solar irradiance and low cooling demand, achieving 104.1 Wh/m2 of power generation and 257.2 Wh/m2 of energy consumption. This results in an energy self-sufficiency rate of 40.5%, surpassing that of Hangzhou (30.5%) and Guangzhou (19.7%). These results provide foundational insights to support the deployment of BIPV technology across diverse climatic zones.

    参考文献
    相似文献
    引证文献
引用本文

黄梦怡,陈逸晨,樊一帆,葛坚. 一体化光伏围护结构对室外微气候和建筑能耗的影响研究 [J]. 园林, 2025, 42 (9): 44-53. 复制

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-08
  • 出版日期: