大数据背景下景观感知对实践决策的价值-以北京小西山步道为例
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目“基于多源数据的城市绿地系统游憩服务价值形成机制研究”(编号:42271300)


The Significance of Landscape Perception Research for PracticalDecision-Making in the Context of Big Data: A Case Study of theXiaoxishan Trail in Beiing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在全民健康背景下,步道作为公共服务设施的核心载体,其规划需兼顾多维景观信息与使用者偏好。然而。传统方法难以全面获取步道三维景观数据,且缺乏对用户偏好的精准评估。大数据显著提升了景观感知研究的精准性与全面性,但其与景观设计实践的深度融合亟待推进。以北京小西山为例,构建“数据获取一偏好评价一决策支撑”框架,结合地理信息数据与问卷调研,应对当下的实践决策难点。大数据的景观感知研究能够:(1)提供多维的步道信息,包括常用起止点、打卡点、步道网络以及区域层面的步道景观信息,揭示铺装前的自然路网中土石路(62.92%)与土路(22.90%)占主导;(2)揭示全域范围内三类使用者的偏好满足程度,发现铺装改造后(铺装路占39.44%),非徒步者满意度提升,但长途徒步者因偏好步道类型被破坏而满意度下降;(3)支撑步道空间规划优化。基于偏好差异提出空间优化策略,如恢复高偏好的原始步道类型,在低密度路网区开发针对不同人群的偏好道路类型,实现路线差异化设计。研究证实,多源数据融合能有效解决规划前端数据匮乏与实践中偏好落位难颖,并通过“信息获取一需求诊断一决策支撑”路径推动景观感知研究向循证设计转化,为步道建设提供科学依据。

    Abstract:

    Within the context of public health imitiatives, trails serve as critical infastruchue in public service systems, requiring planning thatintegrates multidimensional landscape information and user preferences. fowever, conventional methodologies stiuggle to conprehensively capture thre-dimensional (3D) trail landscape data and lack the capacity to quantify user preferences precisely. Whilebig data has significantly enhanced the accuracy and comprehensiveness of landscape perception research, its deep integration witlandscape design practice remains a urgent need. This study employs Beijing's Xiaoxishan area as a case shudy to establish a "DataAcquisition-Preference Evaluation-Decision Support" framework that integrates geospatial data with questionnaire surveys toaddress cumrent practical decision-making challenges, Big data-enabled landscape perception research demonstrates its capacity to(1)Provide multi-dimensional trail information.including fiequently used start/end points, photo-taking hotspots, trail networksand regional trail landscape information, revealing that umpaved trails dominates the natural network before paving (rock-dirt trails62.92%: dit trails: 22.90%): (2) Ouantify preference fulfllment levels aong three distinct user groups across the entire arearevealing that paving (39.44% paved trails)improves non-hiker satisfactionbut decreaseslong-distance hiker satisfaction due toaltered trail types;, (3) lnform spatial planming optimization. Based on preference-based disparities, spatial optimizatton strategiesare formulated, including restoration of high-preference natural trail types and development of user-specific trail typologies inlow-density network zones to achieve route difierentiation. This study confimns that multi-source data fusion eiectively addresesfoundational planning data scarcity and the challenge of preference localization during implementation.Fuitherore.it advancesthe translation of landscape perception into evidence-based design through the “information Acquisition-Demand Diagnosis-Decision Support", thereby establishing a robust scientifc foundation for trail development.

    参考文献
    相似文献
    引证文献
引用本文

宋佳鸿,王志芳,李天舒. 大数据背景下景观感知对实践决策的价值-以北京小西山步道为例 [J]. 园林, 2026, (1): 30-39. 复制

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-15
  • 出版日期: