基于网络文本分析的京津冀地区春季植物景观形象感知研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

北京林业大学热点追踪项目“城市人居环境植物景观资源应用水平与提升策略研究”(编号:2022BLRD05);北京市共建项目“北京城乡节约型绿地营建技术与功能型植物材料高效繁育”(编号:2019GJZL05)


A Study on the Perception of Spring Plant Landscape Image in Beijing-Tianjin-Hebei Region Based on Web Text Analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于游客发布在网络平台的网络游记文本,可以直观地了解人们游览时的景观体验。这使得利用网络数据资源分析游客对于植物景观的形象感知成为可能。春季是植物景观变化最为丰富的时节,通过解读游客春季游览的行为偏好和情感变化,分析游客感知春季植物景观的方式,探讨植物景观形象感知与植物景观构成要素之间的关联性,以此可以拓展景观体验研究的视角和植物景观研究的新途径。以游客发布在网络平台有关京津冀地区春季植物景观的网络游记文本为主要研究对象,通过对网络文本的采集、筛选得到研究所需要的数据并进行结果分析。研究内容包括景观形象感知和植物景观形象感知的词频分析、形象属性类目分析、社会语义网络分析和情感态度分析。借助ROST Content Mining 6.0软件进行文本内容解析,以植物景观形象属性的高频词汇为指标,对词汇出现的频次进行排序、归类,并进行对比,获得春季植物景观形象感知的基本特征。研究得出:高频出现的词汇为名词类,主要是植物和赏花地点的名称;形象属性的类目分析表明开花植物种类的词频统计数据显著高于其他类别(形态特征、色彩特征、数量规模);植物种类中,樱花、桃花、海棠的统计数据显著高于其他植物;社会语义网络的分析进一步显示,春季在公园中观赏樱花和桃花是游人感知的普遍印象;情感态度的分析发现产生负面情绪的影响因素复杂,包括开花状态、天气状况、阻碍接近的因素。

    Abstract:

    Based on the online travel notes posted on online platforms, it is possible to visualize people’s experience of the landscape when visiting. This makes it possible to use online data resources to analyze how visitors perceive the image of plant landscapes. Spring is the time of year with the most abundant changes in plant landscapes. By interpreting the behavioral preferences and emotional changes of visitors in spring, analyzing the way visitors perceive spring plant landscapes, and exploring the correlation between plant landscape image perception and plant landscape components, we can expand the perspective of landscape experience research and a new approach to plant landscape research. This study takes online travelogue texts as the main research object, which are posted by tourists on online platforms about the spring plant landscape in the Beijing-Tianjin-Hebei region. Through the screening of network texts, the data required for the research are collected, and the results are analyzed. The research includes word frequency analysis of landscape image perception and plant landscape image perception, image attribute category analysis, social semantic network analysis, and emotional attitude analysis. With the help of ROST Content Mining 6.0 software for text content parsing, the high-frequency words of plant landscape image attributes were used as indicators to rank and categorize the frequency of word occurrences, and comparative analysis was conducted to obtain the basic characteristics of spring plant landscape image perception. The study concluded that the most frequently occurring words are nouns, mainly are the names of plants and flower viewing locations; the category analysis of image attributes shows that the word frequency statistics of flowering plant species are significantly higher than those of other categories (morphological characteristics, color characteristics, quantity scale); among plant species, the statistical data of cherry blossom (Cerasus yedoensis), peach blossom (Amygdalus persica), and begonia (Malus spectabilis) are significantly higher than other plants; the analysis of social semantic network further shows that viewing cherry blossom and peach blossom in the park is a common impression of tourists in spring; the analysis of emotional attitude finds that negative emotions are influenced by complex factors, including flowering status, weather conditions, and proximity of obstacles.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-14
  • 出版日期: