数字化技术在城市旧居住区绿化普查中的应用研究

Application of Digital Technology in Old Residential Landscape Greening Investigation

朱志欣¹ 李 胜² 白洪靖³ 王 喆⁴ ZHU Zhixin¹ LI Sheng² BAI Hongjing³ WANG Zhe⁴

(1.丽水学院中国青瓷学院,丽水 323000; 2. 浙江农林大学风景园林与建筑学院,杭州 311300; 3.丽水市观云园林有限公司,丽水 323000; 4.丽水学院工学院,丽水 323000)

(1. College of Celadon, Lishui University, Lishui, Zhejiang, China, 323000; 2. College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China, 311300; 3. Lishui Guanyun Garden Co., Ltd., Lishui, Zhejiang, China, 323000; 4. College of Engineering, Lishui University, Lishui, Zhejiang, China, 323000)

对城市旧居住区绿化的养护与优化是城市生态文明建设的重要议题,而数字技术的更新给园林绿化调查与

管理带来了新的机遇和要求。基于高分二号遥感解译结合数据空间分析调整实地调查工作安排,以丽水城

区城中村与开放式小区绿化为调查对象,通过分析优化了人力和时间分配,高效构建了精细化数据成果与

可视化绿化指标图。实践证实信息技术结合传统地面调研是构建城市园林绿地数字化的有效途径,能灵

文章编号: 1000-0283(2022)08-0139-06
DOI: 10. 12193 / j. laing. 2022. 08. 0139. 017
中图分类号: TU986

文献标志码: A 收稿日期: 2021-04-13

修回日期: 2022-02-10

关键词

园林绿化;信息化调查;城市绿化;旧居住区;丽水市

活根据具体项目需求对项目前期分析和中后期维护提供有效参考依据。

Abstrac

摘 要

The management and optimization of the old urban residential green space is now an essential topic of today's ecological civilization construction, and the renovation of information system technology offers new changes and needs for landscape investigation and management. Interpretation of GF-2 Remote sensing image and spatial analysis was used to improve the fieldwork arrangement and focus on the village inside the city and opening residential green space in Lishui City as the study area. Based on the RS and GIS analysis result, it saved labor and time cost and quickly constructed the detailed green space data result and greening visual analysis map. The result shows that taking advantage of both information technology and field research is a suitable way of digital landscape greening management, which can flexibly provide an effective reference for the early analysis and late maintenance of a specific investigation project.

Keywords

landscape greening; information survey; urban greening; old residential area; Lishui City

朱志欣

1989年生/男/浙江丽水人/讲师/研究方向为风景园林信息化与城市绿地生物多样性

李 胜

1978年生/男/浙江平阳人/副教授/研究方向为风景园林科学技术与生态恢复、风景园林历史与理论、遗产保护研究

白洪靖

1990年生/男/浙江丽水人/设计师/从事城市景观设计与绿化施工管理

中国城市科学研究会发布的标准指出, 在城市建成区范围内建成使用20年以上,或 环境质量差、配套设施不足、建筑功能不完 善、结构安全存在隐患、能耗水耗过高、建 筑设备老旧破损的居住生活聚居地为城市旧居住区¹¹。丽水市莲都区内的开放式小区和城中村多为早期城市建设的产物,在使用年限和人居环境标准上均属于城市旧居住区范

基金项目:

浙江省教育厅一般科研项目"两山理念下的丽水山水城市格局动态格局构建与生态规划研究"(编号: Y202044840); 丽水市重点研发计划项目"基于WebGL的BIM—实景耦合三维平台开发"(编号: 2019ZDYF03)

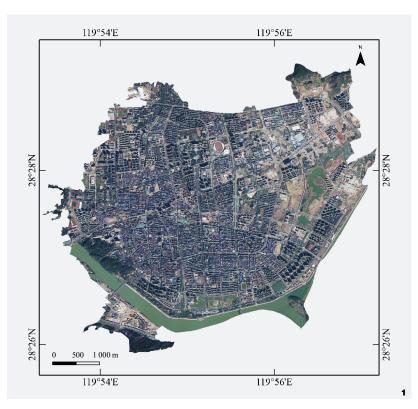


图1 丽水市莲都区旧居住区绿化普查范围

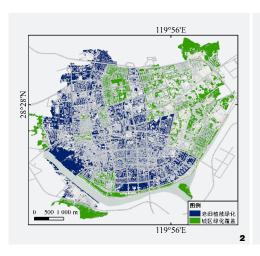
Fig. 1 Scope of greening survey in old residential areas of Liandu, Lishui City

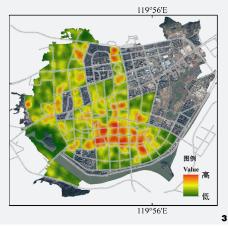
畴。高速城市化建设背景下新旧矛盾日益明显,人们的审美意识觉醒对人居环境的要求逐渐提高,使旧居住区内的绿化质量与环境问题逐渐暴露在公众的视野当中。

丽水作为绿色发展城市和国家首批生态文明示范区,积极响应国家和省文件对旧居住小区改造工作的号召,优先对以开放式小区和城中村类型的旧居住区开展绿化环境调查、补植和改造工作,针对市区旧居住区内绿化分布零散、存量大且数据滞后等问题,提出结合数字化的精细绿化普查和管理要求。数字化绿化管理是现代信息化技术的发展趋势,通过将遥感影像解译下的地理信息和普查调研产生的综合信息以计算机图形和数据的方式进行存储、统计和评价,并融合3S技术优点以数据可视化形式得以向

使用者展示。文章旨在探讨通过结合3S技术 分析优化调查工作,完成最新城市旧居住区 绿化图形要素和普查信息的数字化采集与数 据库构建,并在此基础上形成绿化现状评价,提出养护管理和景观改造的建议。

1研究概况


近年来信息技术与园林绿化管理协同工作的关注度不断提高,从发展智慧城市到数字城市概念都持续推动着对精细化绿化数据产品构建的要求,国家发布的相关文件中也明确指出信息技术作为基本指标在评价标准和园林城市申报工作上的重要性³³。在早期相关研究工作中,高分遥感产品凭借其丰富的波段信息优势和相对较高的分辨率,结合植被指数能够快速完成植被分割和定量


分析[45],成为宏观城市园林绿地调查与评价 的热门解译和调查应用手段。除高分辨率卫 星遥感影像外,结合无人机航拍的近地遥感 影像则在成像分辨率上为更高, 在目视区分 绿地与其他地物类更精准间,但在城市大范 围绿地普查工作中将产生极大的数据生产和 管理负担¹⁷,并在数据镶嵌和图像分割的工 作量和技术上有更高的要求和硬件需求 [8] ,相 比遥感产品更适合布置在后期数据的精准录 入⁹。但需要指出的是,卫星遥感产品多为正 射影像,对植被的解译和识别容易受植被冠 层和其他地表高层建筑遮挡,并产生大量阴 影干扰[10-11], 识别结果的覆盖面积与城市绿化 的实际边界面积有较大的误差,同时也丢失 了中下层植被信息[12]。在针对城市尺度绿化 普查上, 特别是在面对旧居住区绿化调查时, 存在绿化区块个体尺度小、分布零散和绿化 特征消失等情况,目前遥感类产品尚无法实 现精细化数据的提取和测量[13-14], 缺乏对绿 化边界和植被种类信息提取的有效手段,不 能直接代替该尺度下的绿化普查识别。面对 旧居住区绿化空间分布形态与绿化信息尺度 特征的特殊性,研究认为可充分利用遥感定 量分析的优势获取绿化分布体量特征,采取 结合信息化调查评价手段优先规划作业人员 配置, 再结合实地调研工作进行有目的性和 针对性的修正和补充,以达到数据的准确性 和全方位详细信息的记录[15]。

2 材料与方法

2.1 研究对象与范围

依山傍水的北城区为丽水市莲都区的中心城区,是该城市发展更新最频繁的区块。 在近10年的发展中,市中心面积已扩张至原来城市区域的10倍(图1),逐步囊括城郊村落,加上早期小区,形成了如今现代化城市

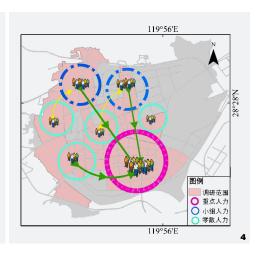


图2 城区植被覆盖

Fig. 2 Research area vegetation coverage extraction based on GF-2

图3 旧居住区植被斑块热力

Fig. 3 Thermal analysis of greening patches in old residential area

图4 调研作业人力分配计划

Fig. 4 The manpower allocation plan of greening investigation

中散布着旧居住区的格局。本研究以丽水市 莲都区主城区为研究对象,分别对白云街道、 紫金街道、万象街道、岩泉街道各个社区内 的主要开放式老小区和城中村开展调查研究。 调查研究内容主要包括对绿化的空间定位和 地面面积的测量,统计调查范围内绿化基本 情况,包括补植的具体位置、现状特点描述、 分块面积以及影像记录;明确所调查园林绿 化在街道、社区、小区的相关行政归属,联 系绿化责任方,建立综合信息数据;结合遥 感影像与勘测数据对莲都区开放式小区和城 中村展开信息统计与分析,研究现状园林绿 化分级,提出养护方案和景观提升建议。

2.2 数据来源与处理

遥感影像采用高分二号影像产品,在ENM软件中完成图像大气校正和辐射标定,并计算归一化植被指数^[16],参考计算植被覆盖度的像元二分模型^[17]对NDM_{min}进行判断,并结合NDM_{min}的取值构建决策树分类,分类

结果设定为植被区域与非植被区域,并完成数据的矢量转换。其他相关社会统计数据由城区建设管理所提供,主要包括文献资料,街道、社区行政边界,城市旧居住区附属绿地范围以及部分早期勘测相关数据,研究对该类数据进行解读,并基于其特征属性和边界形态完成对数据的赋值和坐标连接。

2.3 调查方法设计

(1) 信息初步调查。以高分二号影像为基础完成植被指数遥感解译^[18-19](图2),对植被影像分割的结果进行分析,通过绿化斑块数量和密度初步统计绿化分布情况,形成绿化斑块热力图(图3),并基于热力分布情况建立目标绿化重点排查区域,决定地面调查人力分配与流转形式(图4),作为下一步传统地面调研工作的基础。

(2) 传统地面调查。通过实地走访开展各小区调查,采用南方测绘用RTK记录绿化区块中心坐标、结合无人机记录绿化正射影

像,完成面积测量和形状记录,以文本形式 描述现状绿化基本情况。实地调研记录的内 容将结合ArcGIS数据表构成,每一块单独绿 化都独立成为一个数据条目,通过条目号可 与外部数据表的其他综合信息进行连接,其 数据表构建形式如表1。

(3) 专题会议。召集城建、街道、社区等部门及权属相关单位和居民代表开展专题会议,对工作主题、调研问题和绿化改造进行探讨,征询意见和建议。

3 结果与分析

3.1 调研数据成果

调查全面走访了白云街道、紫金街道、 万象街道、岩泉街道下辖的各个社区内的开放式小区与城中村,摸清了绿化现状信息, 基于苗木类型统计了补植面积。通过测量数 据矢量化和空间定位信息,结合ArcGIS软件 平台完成与高分二号影像的叠加(图5),基 于街道和社区形成绿化分布可视化图,并

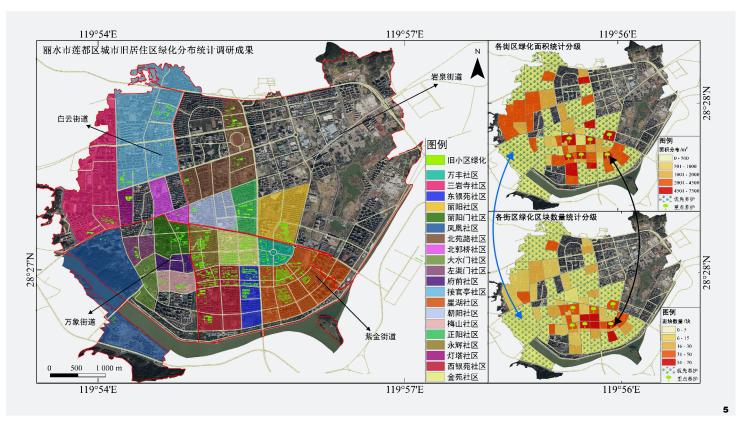


图5 丽水市莲都区旧居住区绿化分布统计调研成果

Fig. 5 Survey results of greening distribution statistics in old residential areas of Liandu, Lishui City

在矢量绿化区块上构建信息表,包括所属街道、所属社区、小区/城中村名称、绿化具体位置、面积、绿化分级、责任方以及现状照片。

3.2 绿化现状分析

本次调研共涉及4个街道内辖的20个社区, 共统计走访绿化区带块1307个, 总面积约141435.68 ㎡。在绿化走访调研的过程中, 除明确绿地面积数据外, 还从植物层次、生长状况、现状特征等基本情况来综合判断绿化分级^[20], 研究结合丽水城市旧居住区现状, 建议将其分为三个梯度等级:第一级为保持改进;第二级为养护补植;第三级为整改重塑。结合分级以闭合绿化几何区块

为单位进行空间赋值,首先初步观察判断植物结构层次和景观性;再综合考察区域内植物群落的生长状况,并根据绿化用地是否被人为破坏、侵占、挪用作进一步判断;最后展开专项研讨会,结合前期构建的初步分级影像作进一步讨论,调整并修正评价分级(表2)。

调研分级工作同时对绿化区缺株、缺苗、社区绿地空档区,以及人为破坏挪用等情况进行调查统计,4个街区共筛选出需要补植的区块有702块,绿化区域面积共计12960.8 m²。绿化信息数据的建立可帮助提取绿化特征进行统计和比较,推进工作安排优化管理需要,由表3可见紫金街道绿化补植面积、区块数量以及补植面积与数量占比最

高,同时绿地三级评价斑块数量最高,是养护工作的重点区域。白云街道三级评价占比最高,反映出该街道绿化存在较大的日常管理养护问题,仅做基础补植并不能达到对绿化的改进效果,需安排植物景观提升计划。除此外,结合空间统计进行分析,对那些低补植区块数和少量面积的街道或社区可进行优先安排工作,减少养护人力物力的移动成本,提高养护完成度。

4 绿化区域补植与改造

4.1 补植改造原则

(1) 区域整体性原则。为保证社区间的协调稳定发展,避免出现相邻老旧居住区的绿化景观改造出现较大的景观层次差异,在

表1 调研数据设计

Tab. 1 Investigation data design

	编号 ID	街道 Subdistrict	社区 Community	小区/村 Neighborhoods	具体位置 Lcoation	面积 Area	绿化分级 Greening level	责任方 Responsible dpet	现状照片 Photo
说明	录入顺序	参考资料	参考资料	调研核实	楼名、幢 号及方位	调查数据矢量化 后软件计算	现场初评后 讨论决定	调研明确	航拍图或 现状照片
类型	A					A			

注: ■表示直接记录; □表示二次录入; ▲表示系统生成。

表2 旧居住区绿化分级拟评判标准

Tab. 2 Grading quasi-evaluation standard for greening of old residential areas

分级 Level class	植物层次 Plant storeys	生长状况 Growth condition	现状特征 Present characteristic	养护建议 Maintenance advice
一级: 改进保持	绿化植物上中下三层完备,群落结构完整,植物组合形态良好	植物整体养护状况良好,乔木挺拔 冠幅形态较好,灌木枝叶繁茂修剪 成形,地被饱满、覆盖全面	绿地特征明确,植被状况良好,形态完整,且具有一定景观性	继续保持后续养护工作合理展开, 定期修剪植物,清除杂草,管理病 虫害
二级: 养护补植	绿化植物层次不丰富,存在 部分中层灌木,少有上层乔 木,下层草本形态单一	植物养护不全面,植物自由生长,分布零散或破碎,生长资源分布不均	具有基本绿地形态,少或 没有景观性	补植绿化缺失斑块,优化养护管理 结构,逐步达到改进保持层级管理 要求
三级:整改重塑	无植被层次	无植被养护, 生长区域杂草丛生, 或岩土裸露	无明显绿地特征或大面积 人为挪用	重新设计绿化区块植物,合理补植,逐步完善区域绿化生长环境

表3 旧住宅区绿化统计概况

Tab. 3 General situation of greening statistics of old residential areas

街道名称 Name	街道绿化总面积/m² Total area of subdistrict greening	绿化区块数量/块 Number of greening patches	补植区块数/块 Number of replant patch	补植区块面积/m² Replant patch area	补植区块面积占比/% Proportion of replant area	空档区面积/m² Barren area	三级斑块占比/% Proportion of level 3 patch
白云街道	17 181.99	149	73	1 167.30	6.79	48.99	70.47
万象街道	10 270.95	151	56	519.21	5.05	37.09	14.57
岩泉街道	25 222.54	138	135	1 482.23	5.88	97.82	25.36
紫金街道	88 760.20	869	438	9 793.12	11.03	50.40	16.34
调研范围总计	141 435.68	1 307	702	12 961.86	9.16	234.3	23.26

补植和改造上需要统筹临近社区在相同面积下所投入的养护人力、工程量、资金量的平衡,避免居住区公众盲目比较和滋生不满情绪^[21]。在与周边环境,包括新建区域的绿化对比上,需从老旧居住区自身特点出发,形成独特的居住区绿化景观特色。

(2) 功能性原则。旧居住区是早期城市建设的产物,在小区内部功能上也保留了早期建设产生的居民个人院落或社区商业娱乐附属空间,其公共空间尺度已满足不了现

代社会发展下的功能需求,在面对日益增长的附属设施、居住设备和交通设备时,人们对有限空间的利用需求进一步增加,并在潜移默化下促发形成局部绿化挪用的不良结果。鉴于此,在绿化改造充分需尊重原住区居民对空间的使用需求,需从植被的三维空间形态出发,一味盲目追求堆砌植物景观丰度和厚度会打破目前空间平衡,优先保障居民合理空间的基本使用需求,对居民生活习惯的影响降至最低。在面对具体绿化个人

挪用时,要优先沟通,及时清理,落实养护 和监督责任^[22]。

4.2 植物选择与搭配

草坪的补植在原有类别上进行,以麦冬 (Ophiopogon japonicus) 和黑麦草 (Lolium perenne) 为主,易打理且有利于绿化区域卫生维护, 其形态上也能高效覆盖裸露岩土,较好区分 绿化边界,提升绿化完整度。在补植草坪 的基础上重点关注绿化转角、边界、条带

处适当以单植地被或混植地被点缀补植,在 植物的选择上结合光照强度进行区分,喜阳 植物主要选择细裂美女樱(Verbena tenera)、蓝 雪花(Ceratostigma plumbaginoides)、柳叶马鞭草 (Verbena bonariensis)、佛甲草(Sedum lineare)、金 叶苔草(Carex 'Evergold') 等, 耐阴植物主要 选择大吴风草 (Farfugium japonicum)、大花萱草 (Hemerocallis middendorfii)、玉簪 (Hosta plantaginea)、 洒金珊瑚 (Aucuba japonica) 等。在地被植物组 合上考虑色相搭配, 向阳处以清新淡雅色系 为主, 突出清爽宜人的质感。 耐阴处则适当 点缀具有高明度或高纯度特点的观叶或观花 植物,提升阴蔽处植物的活跃感。在对中层 的植物选择上, 应优先补植原有植被, 在 隔断或重要边界处选择色彩、层次明快、整 齐美观, 易于修剪的整形植物; 适当补植具 备景观性, 丰富中层植被的形态和色彩, 如 选择木本花卉五色梅 (Lantana camara)、金焰绣 线菊(Spiraea xbumalda cv. Coldfiame)、紫荆(Cercis chinensis)、杜鹃(Rhododendron simsii)、栀子花 (Gardenia jasminoides)、鸡爪槭 (Acer palmatum)、山 茶 (Camellia japonica) 等。从中层乔灌木的三维 形态来看, 其空间位置和延伸形态是压缩公 共空间的使用率主要原因。因此, 除必要隔 断需求外, 在旧居住区可不建议中层植被种 植干临近绿化边界区域。乔木由干移植难度 和老旧居住空间高度限制, 一般不建议进行 重新种植,原有乔木多为香樟(Cinnamomum camphora)、广玉兰(Magnolia grandiflora)、杜英 (Elaeocarpus decipiens)、银杏(Ginkgo biloba)和无 花果 (Ficus carica) 等, 是常见且优秀的园林树 种, 可在此基础上提升养护管理。

5 结语

数字化绿化普查在面对数据缺失或长久 未更新的区域时,遥感影像解译只能获得模 糊数值,数据达不到相应绿化管理和操作的应用需求。因此,在面对城市旧居住区错综复杂的环境时,可利用遥感高效全局解译信息作为前期宏观分析手段,并基于信息技术对数据构成的视角布置了精细化数据采集的要求,结合传统地面调研高效且有序获取详细的尺寸信息和丰富的属性数据,完成数据的录入与融合。相比早期研究中仅依靠遥感数据获取的绿量信息,本次数字化绿化普查全面记录了丽水城市旧居住区中零碎的绿化区块综合信息,并对每一处绿化完成了除经纬度外更本土化的位置描述,联系和落实了责任方推进绿化补植和改造工作。

参考文献

注:文中图表均由作者绘制。

- [1] 中国城市科学研究会. 城市旧居住区综合改造技术标准: T/CSUS04-2019[S]. 北京: 建筑工业出版社, 2019: 2.
- [2] 师卫华,季珏,张琰,等.城市园林绿化智慧化管理体系及平台建设初探[J].中国园林,2019,35(08): 124,129
- [3] 张晓军, 师卫华, 许士翔, 等. 城市园林绿化信息管理与辅助决策关键技术研究与应用[J]. 建设科技, 2016(07): 104-105.
- [4] 林勇, 易扬, 张桂莲, 等. 高光谱遥感技术在城市绿地调查中的应用及发展趋势[J]. 园林, 2020(06): 70-75
- [5] 徐知宇, 周艺, 王世新, 等. 面向GF-2遙感影像的 U-Net城市绿地分类[J]. 中国图象图形学报, 2021, 26(03): 700-713.
- [6] 周小成, 廖鸿燕, 崔雅君, 等. 无人机遥感估算绿化 园林三维绿量——以福州大学旗山校区为例[J]. 福州大学学报(自然科学版), 2020, 48(6): 699-705.
- [7] 李忠强, 王瀚宇, 刘婷婷, 等. 基于Pix4Dmapper的无人机数据自动化处理技术探讨[J]. 海洋科学, 2018, 42(1): 39-44.
- [8] 陈荻, 李卫正, 孔文丽, 等. 基于低空高分辨影像的 三维绿量计算方法——以南京林业大学校园为例 [J]. 中国园林, 2015, 31(09): 22-26.

- [9] 刘方正, 杜金鸿, 周越, 等. 无人机和地面相结合的 自然保护地生物多样性监测技术与实践[J]. 生物多 样性, 2018, 26(8): 905-917.
- [10] 苏伟, 侯宁, 李珙, 等. 基于Sentinel-2遙感影像的玉米冠层叶面积指数反演[J]. 农业机械学报, 2018, 49(1): 151-156.
- [11] 余柏蒗, 刘红星, 吴健平. 一种应用机载LiDAR数据和高分辨率遥感影像提取城市绿地信息的方法[J]. 中国图象图形学报A, 2010, 15(5): 782-789.
- [12] 蒋轩, 周坚华. 针对分层分类和多描述符空间的城镇植被群分类[J]. 遥感信息, 2015(2): 43-49.
- [13] 高永刚,徐涵秋. 基于多源遥感影像的多尺度城市植被覆盖度估算[J]. 红外与毫米波学报, 2017, 36(2): 225-234.
- [14] 朱婉雪, 李仕冀, 张旭博, 等. 基于无人机遥感植被指数优选的田块尺度冬小麦估产[J]. 农业工程学报, 2018, 34(11): 78-86.
- [15] 李程,张海涛,赵宇豪,等基于地面调查与遥感调查协同的城市绿地规模和分布研究——以青岛市为例[J]. 风景园林, 2019, 26(08): 48-53.
- [16] 杨述平. 归一化植被指数测量技术研究[J]. 应用基础与工程科学学报, 2004, 12(3): 328-332.
- [17] 李苗苗, 吴炳方, 颜长珍, 等. 密云水库上游植被覆 盖度的遥感估算[J]. 资源科学, 2004 (04): 153-159.
- [18] 陈仁喜, 王成芳. 城市高分辨率影像绿地植被识别 研究进展[J]. 遥感信息, 2013, 28(03): 119-125.
- [19] 栾猛, 张欣, 王松华. 遥感在城市绿地调查中的应用[J]. 安徽农业科学, 2009, 37(28): 3815-3818.
- [20] 杨静怡, 马履一, 张博, 等. 北京市宜居小区绿化评价研究[J]. 南京林业大学学报(自然科学版), 2014, 38(03): 134-138.
- [21] 李巍, 张凯, 马颖, 等. 基于复杂适应性系统理论的 城中村更新探究——以深圳市南山区南头古城城 中村为例[C]//活力城乡美好人居——2019中国城市 规划年会论文集(07城市设计). 北京: 中国城市规划 学会, 2019: 16.
- [22] 卢为民. 城中村改造中的生态环境建设探讨—— 以上海市为例[J]. 环境保护, 2014, 42(23): 42-44.